Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
3.
J Pers Med ; 13(2)2023 Jan 29.
Article in English | MEDLINE | ID: covidwho-2216509

ABSTRACT

BACKGROUND: The pandemic crisis created conditions of insecurity and threat and brought about changes in social contacts and everyday life. Frontline healthcare workers (HCW) were mostly affected. We aimed to evaluate the quality of life and negative emotions in COVID-19 HCW and searched for factors influencing the above. METHODS: The present study was conducted among three different academic hospitals in central Greece (04/2020-03/2021). Demographics, attitude towards COVID-19, quality of life, depression, anxiety, stress (using the WHOQOL-BREF and DASS21 questionnaire) and the fear of COVID-19 were assessed. Factors affecting the reported quality of life were also assessed. RESULTS: The study involved 170 HCW in COVID-19 dedicated departments. Moderate levels of quality of life (62.4%), satisfaction with social relations (42.4%), working environment (55.9%) and mental health (59.4%) were reported. Stress was present in 30.6% of HCW; 20.6% reported fear for COVID-19, depression (10.6%) and anxiety (8.2%). HCW in the tertiary hospital were more satisfied with social relations and working environment and had less anxiety. Personal Protective Equipment (PPE) availability affected the quality of life, satisfaction in the work environment and the presence of anxiety and stress. Feeling safe during work influenced social relations and fear of COVID-19 Conclusion: The HCW quality of life is affected in the pandemic. Feelings of safety during work related to the reported quality of life.

4.
J Pers Med ; 12(9)2022 Sep 19.
Article in English | MEDLINE | ID: covidwho-2043831

ABSTRACT

Acute respiratory distress syndrome (ARDS) accounts for a quarter of mechanically ventilated patients, while during the pandemic, it overwhelmed the capacity of intensive care units (ICUs). Lung protective ventilation (low tidal volume, positive-end expiratory pressure titrated to lung mechanics and oxygenation, permissive hypercapnia) is a non-pharmacological approach that is the gold standard of management. Among the pharmacological treatments, the use of neuromuscular blocking agents (NMBAs), although extensively studied, has not yet been well clarified. The rationale is to minimize the risk for lung damage progression, in the already-injured pulmonary parenchyma. By abolishing rigorous spontaneous efforts, NMBAs may decrease the generation of high transpulmonary pressures that could aggravate patients' self-inflicted lung injury. Moreover, NMBAs can harmonize the patient-ventilator interaction. Recent randomized controlled trials reported contradictory results and changed the clinical practice in a bidirectional way. NMBAs have not been documented to improve long-term survival; thus, the current guidance suggests their use only in patients in whom a lung protective ventilation protocol cannot be applied, due to asynchrony or increased respiratory efforts. In the present review, we discuss the published data and additionally the clinical practice in the "war" conditions of the COVID-19 pandemic, concerning NMBA use in the management of patients with ARDS.

6.
Antibiotics (Basel) ; 11(8)2022 Aug 03.
Article in English | MEDLINE | ID: covidwho-1969068

ABSTRACT

It is widely known that blood stream infections (BSIs) in critically ill patients may affect mortality, length of stay, or the duration of mechanical ventilation. There is scarce data regarding blood stream infections in mechanically ventilated COVID-19 patients. Preliminary studies report that the number of secondary infections in COVID-9 patients may be higher. This retrospective analysis was conducted to determine the incidence of BSI. Furthermore, risk factors, mortality, and other outcomes were analyzed. The setting was an Intensive Care Unit (ICU) at a University Hospital. Patients suffering from SARS-CoV-2 infection and requiring mechanical ventilation (MV) for >48 h were eligible. The characteristics of patients who presented BSI were compared with those of patients who did not present BSI. Eighty-four patients were included. The incidence of BSI was 57%. In most cases, multidrug-resistant pathogens were isolated. Dyslipidemia was more frequent in the BSI group (p < 0.05). Moreover, BSI-group patients had a longer ICU stay and a longer duration of both mechanical ventilation and sedation (p < 0.05). Deaths were not statistically different between the two groups (73% for BSI and 56% for the non-BSI group, p > 0.05). Compared with non-survivors, survivors had lower baseline APACHE II and SOFA scores, lower D-dimers levels, a higher baseline compliance of the respiratory system, and less frequent heart failure. They received anakinra less frequently and appropriate therapy more often (p < 0.05). The independent risk factor for mortality was the APACHE II score [1.232 (1.017 to 1.493), p = 0.033].

7.
Respir Res ; 23(1): 94, 2022 Apr 14.
Article in English | MEDLINE | ID: covidwho-1793938

ABSTRACT

BACKGROUND: Before the pandemic of coronavirus disease (COVID-19), rapidly improving acute respiratory distress syndrome (ARDS), mostly defined by early extubation, had been recognized as an increasingly prevalent subphenotype (making up 15-24% of all ARDS cases), associated with good prognosis (10% mortality in ARDSNet trials). We attempted to determine the prevalence and prognosis of rapidly improving ARDS and of persistent severe ARDS related to COVID-19. METHODS: We included consecutive patients with COVID-19 receiving invasive mechanical ventilation in three intensive care units (ICU) during the second pandemic wave in Greece. We defined rapidly improving ARDS as extubation or a partial pressure of arterial oxygen to fraction of inspired oxygen ratio (PaO2:FiO2) greater than 300 on the first day following intubation. We defined persistent severe ARDS as PaO2:FiO2 of equal to or less than 100 on the second day following intubation. RESULTS: A total of 280 intubated patients met criteria of ARDS with a median PaO2:FiO2 of 125.0 (interquartile range 93.0-161.0) on day of intubation, and overall ICU-mortality of 52.5% (ranging from 24.3 to 66.9% across the three participating sites). Prevalence of rapidly improving ARDS was 3.9% (11 of 280 patients); no extubation occurred on the first day following intubation. ICU-mortality of patients with rapidly improving ARDS was 54.5%. This low prevalence and high mortality rate of rapidly improving ARDS were consistent across participating sites. Prevalence of persistent severe ARDS was 12.1% and corresponding mortality was 82.4%. CONCLUSIONS: Rapidly improving ARDS was not prevalent and was not associated with good prognosis among patients with COVID-19. This is starkly different from what has been previously reported for patients with ARDS not related to COVID-19. Our results on both rapidly improving ARDS and persistent severe ARDS may contribute to our understanding of trajectory of ARDS and its association with prognosis in patients with COVID-19.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19/diagnosis , COVID-19/therapy , Humans , Intensive Care Units , Oxygen , Respiration, Artificial/methods , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/therapy
8.
J Pers Med ; 12(3)2022 Feb 23.
Article in English | MEDLINE | ID: covidwho-1700261

ABSTRACT

BACKGROUND: Nasogastric tube (NGT) placement is a daily routine in the Intensive Care Unit (ICU), and misplacement of the NGT can cause serious complications. In COVID-19 ARDS patients, proning has emerged the need for frequent NGT re-evaluations. The gold standard technique, chest X-ray, is not always feasible. In the present study we report our experience with the use of ultrasonographic confirmation of NGT position. METHODS: A prospective study in 276 COVID-19 ARDS patients admitted after intubation in the ICU. Ultrasonographic evaluation was performed using longitudinal or sagittal epigastric views. Examinations were performed during the initial NGT placement and every time the patients returned to the supine position after they had been proned or whenever critical care physicians or nurses considered that reconfirmation was necessary. RESULTS: Ultrasonographic confirmation of correct NGT placement was feasible in 246/276 (89.13%) patients upon ICU admission. In 189/246 (76.8%) the tube could be visualized in the stomach (two parallel lines), in 172/246 (69.9%) the ultrasonographic whoosh test ("flash" due to air instillation through the tube, seen with ultrasonography) was evident, while in 164/246 (66.7%) both tests confirmed correct NGT placement. During ICU stay 590 ultrasonographic NGT evaluations were performed, and in 462 (78.14%) cases correct NGT placement were confirmed. In 392 cases, a chest X-ray was also ordered. The sensitivity of ultrasonographic NGT confirmation in these cases was 98.9%, specificity 57.9%, PPV 96.2%, and NPV 3.8%. The time for the full evaluation was 3.8 ± 3.4 min. CONCLUSION: Ultrasonographic confirmation of correct NGT placement is feasible in the initial placement, but also whenever needed thereafter, especially in the COVID-19 era, when changes in posture have become a daily practice in ARDS patients.

SELECTION OF CITATIONS
SEARCH DETAIL